Ions in cold electrostatic storage devices Ions in cold electrostatic storage devices

نویسندگان

  • Peter Reinhed
  • Dieter Gerlich
چکیده

We have constructed a compact purely electrostatic ion-beam trap, ConeTrap, which we have mounted inside a double-walled vacuum chamber. In the inner vacuum chamber, we can obtain ultra-high vacuum (UHV) conditions and reach thermal equilibrium at well controlled temperatures down to 10 K. The chamber was constructed partly with the purpose of making high-precision measurements in ConeTrap, but also as a test-chamber for testing components (such as the detector-assembly tested and described in this thesis and paper III) to be used in the DESIREE (Double ElectroStatic Ion Ring ExpEriment) facility. The latter is a double electrostatic ion storage-ring being constructed at Stockholm University, in which the conditions are meant to mimic the environment in the interstellar medium. The interaction between two oppositely charged ions at very low relative velocities (controlled collision energies down to 10 meV) may then be studied in a section of the storage device where the two ion beams merge. The lifetime of loosely bound electronic systems, for example He−, is, at room temperature (and even at much lower temperatures), significantly affected by photons from blackbody radiation from the experimental device and its surroundings. The cryogenic temperature and low pressure obtained in the test chamber have made it possible to use ConeTrap to make the first correction-free lifetime measurement of the long-lived J=5/2 fine-structure level of the metastable 1s2s2p 4Po state of He−. Under the assumption of a statistical population of the fine-structure levels, at the time when the ions are created, we have also deduced the lifetimes of the short-lived J=1/2 and J=3/2 fine-structure levels. Furthermore, we have used ConeTrap to measure the pressure dependent storage lifetimes of He+ and Ar+ ions over wide ranges of temperatures and pressures, and we have thus been able to store positive ions with storage lifetimes of tens of seconds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physics with colder molecular ions: The Heidelberg Cryogenic Storage Ring CSR

A novel cryogenic electrostatic storage ring is planned to be built at the Max-Planck Institute for Nuclear Physics in Heidelberg. The machine is expected to operate at low temperatures (∼ 2 K) and to store beams with kinetic energies between 20 to 300 keV. An electron target based on cooled photocathode technology will serve as a major tool for the study of reactions between molecular ions and...

متن کامل

Long-range electrostatic screening in ionic liquids.

Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids com...

متن کامل

Design Studies of an Electrostatic Storage Ring

Electrostatic storage rings combine a number of very interesting characteristics that make them an attractive tool in the low energy range. In contrast to magnetic rings, all of the fields in an electrostatic storage ring are completely mass independent. At the same particle energy and charge state, ions from light protons to heavy biomolecules can in principal be stored with identical field se...

متن کامل

Simulations of Space Charge Effects in Low Energy Electrostatic Storage Rings

Electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong space charge limitations; probably linked to non-linear fields that can...

متن کامل

Electron Cooling Possibilities for Hera

Electron Cooling of the hadron beam in HERA could be a way to upgrade the luminosity for electron-proton and electron-heavy ion collisions. Because of the necessary electron energy of 450 MeV for cooling protons and about 180 MeV for cooling heavy ions the conventional approach using electrostatic DC sources is not possible. Instead an electron storage ring could be used. For this ring there ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009